Skip to contents

Identifies duplicate bibliographic entries using different duplicate detection methods.

Usage

find_duplicates(
  data,
  method = "exact",
  group_by,
  threshold,
  to_lower = FALSE,
  rm_punctuation = FALSE
)

Arguments

data

A character vector containing duplicate bibliographic entries.

method

A string indicating how matching should be calculated. Either "exact" for exact matching (the default), or the name of a function for calculating string distance.

group_by

An optional vector, data.frame or list containing data to use as 'grouping' variables; that is, categories within which duplicates should be sought. Defaults to NULL, in which case all entries are compared against all others. Ignored if method = "exact".

threshold

Numeric: the cutoff threshold for deciding if two strings are duplicates. Sensible values depend on the method chosen. Defaults to 5 if method = "string_osa" and must be specified in all other instances except method = "exact" (where no threshold is required).

to_lower

Logical: Should all entries be converted to lower case before calculating string distance? Defaults to FALSE.

rm_punctuation

Logical: Should punctuation should be removed before calculating string distance? Defaults to FALSE.

Value

Returns a vector of same length as nrow(data), where duplicated values have the same integer, and attributes listing methods used.

See also

string_ or fuzz_ for suitable functions to pass to methods; extract_unique_references() and deduplicate() for higher-level functions.

Examples

my_df <-  tibble::tibble(
  title = c(
    "EviAtlas: a tool for visualising evidence synthesis databases",
    "revtools: An R package to support article screening for evidence synthesis",
    "An automated approach to identifying search terms for systematic reviews",
    "Reproducible, flexible and high-throughput data extraction from primary literature",
    "eviatlas:tool for visualizing evidence synthesis databases.",
    "REVTOOLS a package to support article-screening for evidence synthsis"
  ),
  year = c("2019", "2019", "2019", "2019", NA, NA),
  authors = c("Haddaway et al", "Westgate",
              "Grames et al", "Pick et al", NA, NA))

# run deduplication
dups <- find_duplicates(
  my_df$title,
  method = "string_osa",
  rm_punctuation = TRUE,
  to_lower = TRUE)

extract_unique_references(my_df, matches = dups)
#> # A tibble: 4 × 4
#>   title                                               year  authors n_duplicates
#>   <chr>                                               <chr> <chr>          <dbl>
#> 1 EviAtlas: a tool for visualising evidence synthesi… 2019  Haddaw…            2
#> 2 revtools: An R package to support article screenin… 2019  Westga…            2
#> 3 An automated approach to identifying search terms … 2019  Grames…            1
#> 4 Reproducible, flexible and high-throughput data ex… 2019  Pick e…            1

# or, in one line:
deduplicate(my_df, "title",
  method = "string_osa",
  rm_punctuation = TRUE,
  to_lower = TRUE)
#> # A tibble: 4 × 4
#>   title                                               year  authors n_duplicates
#>   <chr>                                               <chr> <chr>          <dbl>
#> 1 EviAtlas: a tool for visualising evidence synthesi… 2019  Haddaw…            2
#> 2 revtools: An R package to support article screenin… 2019  Westga…            2
#> 3 An automated approach to identifying search terms … 2019  Grames…            1
#> 4 Reproducible, flexible and high-throughput data ex… 2019  Pick e…            1